The effect of meshing on learning variational methods: when discretization shapes interpretation
Abstract
Computational thinking has deeply transformed the way scientific problems are represented and solved. This paper analyzes how spatial discretization strategies influence the conceptual understanding of variational methods, which are key to the numerical resolution of partial differential equations. Through a comparative study of two widely used platforms –OpenFOAM and Basilisk– the work examines how their data structures model space and constrain the design of algorithms and differential operators, focusing on turbulence simulation as a representative case.
Drawing on the epistemological contributions of Piaget and García, the paper argues that these technical choices are not neutral: they shape specific ways of thinking about physical phenomena and validating solutions. It is argued that the differences between these numerical modeling paradigms should be considered not only when selecting computational tools but also when designing engineering curricula. Finally, based on the analysis presented, the paper offers a critical reflection on the impact of numerical tools –including large language models– on the cognitive development of future professionals. In a context of massive and often uncritical adoption of technologies based on discrete mathematics and statistics, it becomes crucial to reassess their epistemological implications.
Downloads
References
Canciani, P. (2023). Modelado de atomización de gotas mediante fluidodinámica computacional [Tesina de grado inédita]. Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario.
Canciani, P., Pairetti, C., & Navone, H. (2024). Modeling drop atomization using computational fluid dynamics. Mecánica Computacional, 41, 321-331. https://doi.org/p67t
Carbone, M. C. C., Pairetti, C. I., Venier, C. M., & Damián, S. M. (2024). Evaluación de modelo de turbulencia para simulación de grandes torbellinos implícita en aerodinámica externa. Resúmenes de Mecánica Computacional, 1(6), 57. https://doi.org/p67v
DiSessa, A. A. (2000). Changing minds: computers, learning, and literacy. MIT Press. https://doi.org/p67w
DiSessa, A. A. (2002). Why “conceptual ecology” is a good idea. En M. Limón & L. Mason (Eds.), Reconsidering conceptual change: Issues in theory and practice (pp. 28-60). Springer.
DiSessa, A. A. (2014). A history of conceptual change research. UC Berkeley.
DiSessa, A. A. (2023). Conceptual change and developmental teaching: comment on Gennen. Human Development, 67(2), 108-113. https://doi.org/p67x
Feigenbaum, L. (1985). Brook Taylor and the method of increments. Archive for History of Exact Sciences, 34, 1-140. https://doi.org/c6nz6p
García, R. (1997). La epistemología genética y la ciencia contemporánea. Gedisa.
Greenshields, C. J. (2018). OpenFOAM user guide version 6. The OpenFOAM Foundation.
Greenshields, C. J., & Weller, H. G. (2022). Notes on computational fluid dynamics: general principles. CFD Direct.
Hammer, D., & Elby, A. (2002). On the form of a personal epistemology. En B. K. Hofer & P. R. Pintrich (Eds.), Personal epistemology: the psychology of beliefs about knowledge and knowing (pp. 169-190). Erlbaum.
Harari, Y. N. (2024). Nexus: A brief history of information networks from the Stone Age to AI. Random House.
Milne-Thomson, L. M. (2000). The calculus of finite differences. American Mathematical Society.
Moukalled, F., Mangani, L., & Darwish, M. (2016). The finite volume method. Springer International Publishing.
Oreskes, N., Shrader-Frechette, K. & Belitz, K. (1994). Verification, validation, and confirmation of numerical models in the earth sciences. Science, 263(5147), 641-646. https://doi.org/ct36kv
Papert, S. (1980). Mindstorms: children, computers, and powerful ideas. Basic Books.
Piaget, J., & García, R. (1982). Psicogénesis e historia de la ciencia. Siglo XXI.
Popinet, S. (2009). An accurate adaptive solver for surface-tension-driven interfacial flows. Journal of Computational Physics, 228(16), 5838-5866. https://doi.org/czp5zz
Prosperetti, A. (2017). Vapor bubbles. Annual Review of Fluid Mechanics, 49(1), 221-248. https://doi.org/gs7rn4
Pujante-Martínez, L., Le Clainche, S., Pérez, J. M., & Ferrer, E. (2023). Learning fluid dynamics and the principles of flight: from primary school to STEM degrees. European Journal of Physics, 44(4), 045002. https://doi.org/p673
Roache, P. J. (2008, octubre). Validation: definitions or descriptions [Ponencia]. 3rd Workshop on CFD Uncertainty Analysis, Lisboa, Portugal. https://goo.su/AzPBp
Seguenzia, N. I., Canciani, P., Pairetti, C., & Navone, H. (2022). Efectos del modelado de turbulencia sobre las fuerzas aerodinámicas en un cilindro fijo. Mecánica Computacional, 39(4), 109-110. https://goo.su/fpOs
Van Hooft, J. A., Popinet, S., Van Heerwaarden, C. C., Van der Linden, S. J., De Roode, S. R., & Van de Wiel, B. J. (2018). Towards adaptive grids for atmospheric boundary-layer simulations. Boundary-Layer Meteorology, 167, 421-443. https://doi.org/gdkrrn
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Cesar Pairetti

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
Authors will retain their copyright and grant the journal the right of first publication of their work, which will simultaneously be licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License.
Authors may enter into separate, additional non-exclusive licensing agreements for the distribution of the published version of the work (e.g., depositing it in an institutional repository or publishing it in a monographic volume), provided that the initial publication in this journal is acknowledged.
Authors are permitted and encouraged to disseminate their work online (e.g., in institutional repositories or on their personal websites) prior to and during the submission process, as this can lead to productive exchanges and increase the visibility and citation of the published work. (See The Open Access Effect).















