The effect of meshing on learning variational methods: when discretization shapes interpretation

Authors

Abstract

Computational thinking has deeply transformed the way scientific problems are represented and solved. This paper analyzes how spatial discretization strategies influence the conceptual understanding of variational methods, which are key to the numerical resolution of partial differential equations. Through a comparative study of two widely used platforms –OpenFOAM and Basilisk– the work examines how their data structures model space and constrain the design of algorithms and differential operators, focusing on turbulence simulation as a representative case.

Drawing on the epistemological contributions of Piaget and García, the paper argues that these technical choices are not neutral: they shape specific ways of thinking about physical phenomena and validating solutions. It is argued that the differences between these numerical modeling paradigms should be considered not only when selecting computational tools but also when designing engineering curricula. Finally, based on the analysis presented, the paper offers a critical reflection on the impact of numerical tools –including large language models– on the cognitive development of future professionals. In a context of massive and often uncritical adoption of technologies based on discrete mathematics and statistics, it becomes crucial to reassess their epistemological implications.

Downloads

Download data is not yet available.

Author Biography

Cesar Pairetti, Universidad Nacional de Rosario

Es Profesor Adjunto en la Facultad de Ciencias Exactas, Ingeniería y Agrimensura de la Universidad Nacional de Rosario (UNR). Sus principales líneas de investigación se relacionan a la simulación numérica, especialmente a la dinámica de fluidos aplicada a problemas de atomización, transferencia de calor, flujo multifásico y cambios de fase. Por otra parte, colabora con el grupo de Dispositivos Intermediales Dinámicos (DID) del Instituto Rosario de Investigaciones en Ciencias de la Educación (IRICE) perteneciente al Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y a la UNR, estudiando metodologías de enseñanza-aprendizaje en el contexto de carreras STEAM, atravesadas por el uso de TIC, más puntualmente de aplicaciones relacionadas con herramientas de inteligencia artificial.

References

Canciani, P. (2023). Modelado de atomización de gotas mediante fluidodinámica computacional [Tesina de grado inédita]. Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario.

Canciani, P., Pairetti, C., & Navone, H. (2024). Modeling drop atomization using computational fluid dynamics. Mecánica Computacional, 41, 321-331. https://doi.org/p67t

Carbone, M. C. C., Pairetti, C. I., Venier, C. M., & Damián, S. M. (2024). Evaluación de modelo de turbulencia para simulación de grandes torbellinos implícita en aerodinámica externa. Resúmenes de Mecánica Computacional, 1(6), 57. https://doi.org/p67v

DiSessa, A. A. (2000). Changing minds: computers, learning, and literacy. MIT Press. https://doi.org/p67w

DiSessa, A. A. (2002). Why “conceptual ecology” is a good idea. En M. Limón & L. Mason (Eds.), Reconsidering conceptual change: Issues in theory and practice (pp. 28-60). Springer.

DiSessa, A. A. (2014). A history of conceptual change research. UC Berkeley.

DiSessa, A. A. (2023). Conceptual change and developmental teaching: comment on Gennen. Human Development, 67(2), 108-113. https://doi.org/p67x

Feigenbaum, L. (1985). Brook Taylor and the method of increments. Archive for History of Exact Sciences, 34, 1-140. https://doi.org/c6nz6p

García, R. (1997). La epistemología genética y la ciencia contemporánea. Gedisa.

Greenshields, C. J. (2018). OpenFOAM user guide version 6. The OpenFOAM Foundation.

Greenshields, C. J., & Weller, H. G. (2022). Notes on computational fluid dynamics: general principles. CFD Direct.

Hammer, D., & Elby, A. (2002). On the form of a personal epistemology. En B. K. Hofer & P. R. Pintrich (Eds.), Personal epistemology: the psychology of beliefs about knowledge and knowing (pp. 169-190). Erlbaum.

Harari, Y. N. (2024). Nexus: A brief history of information networks from the Stone Age to AI. Random House.

Milne-Thomson, L. M. (2000). The calculus of finite differences. American Mathematical Society.

Moukalled, F., Mangani, L., & Darwish, M. (2016). The finite volume method. Springer International Publishing.

Oreskes, N., Shrader-Frechette, K. & Belitz, K. (1994). Verification, validation, and confirmation of numerical models in the earth sciences. Science, 263(5147), 641-646. https://doi.org/ct36kv

Papert, S. (1980). Mindstorms: children, computers, and powerful ideas. Basic Books.

Piaget, J., & García, R. (1982). Psicogénesis e historia de la ciencia. Siglo XXI.

Popinet, S. (2009). An accurate adaptive solver for surface-tension-driven interfacial flows. Journal of Computational Physics, 228(16), 5838-5866. https://doi.org/czp5zz

Prosperetti, A. (2017). Vapor bubbles. Annual Review of Fluid Mechanics, 49(1), 221-248. https://doi.org/gs7rn4

Pujante-Martínez, L., Le Clainche, S., Pérez, J. M., & Ferrer, E. (2023). Learning fluid dynamics and the principles of flight: from primary school to STEM degrees. European Journal of Physics, 44(4), 045002. https://doi.org/p673

Roache, P. J. (2008, octubre). Validation: definitions or descriptions [Ponencia]. 3rd Workshop on CFD Uncertainty Analysis, Lisboa, Portugal. https://goo.su/AzPBp

Seguenzia, N. I., Canciani, P., Pairetti, C., & Navone, H. (2022). Efectos del modelado de turbulencia sobre las fuerzas aerodinámicas en un cilindro fijo. Mecánica Computacional, 39(4), 109-110. https://goo.su/fpOs

Van Hooft, J. A., Popinet, S., Van Heerwaarden, C. C., Van der Linden, S. J., De Roode, S. R., & Van de Wiel, B. J. (2018). Towards adaptive grids for atmospheric boundary-layer simulations. Boundary-Layer Meteorology, 167, 421-443. https://doi.org/gdkrrn

Published

2025-12-30

How to Cite

Pairetti, C. (2025). The effect of meshing on learning variational methods: when discretization shapes interpretation. Revista IRICE, (49), e2035. Retrieved from https://ojs.rosario-conicet.gov.ar/index.php/revistairice/article/view/2035

Issue

Section

Dossier